

Proton Stacking in the Recycler

Chandra Bhat

Tuesday SNuMI Meeting High Intensity Protons April 4, 2006

Contents

- Barrier bucket proton stacking schemes
 - Longitudinal Phase-space coating
 - Fast barrier compression technique
 - Momentum stacking (Griffin's scheme)

Longitudinal Phase-space Coating

Scheme developed for Recycler pbar stacking during e-cool era

C. M. Bhat, Beams-doc-2057-v1 (Dec. 2005)

Sequences of Longitudinal Phase Space Coating

Simulations of Phase-space Coating

Experimental Demonstration of Longitudinal Phase-space Coating

(Video)

Work in progress

Schottky Spectrum

Fast Bunch Compression

(EPAC2004, page 1479)

Chandra Bhat*, Bill Foster*, Brian Chase, Jim MacLachlan*, Kiyomi Seiya, Phillip Varghese, Dave Wildman

Physics of Fast Bunch Compression:

Rotation of a bunch about rf stable and unstable point within a Barrier bucket

7

Fast Bunch Compression: Symmetric Compression ESME Simulations

Symmetric Compression

Experimental Results: One Booster Batch Compression in the Recycler

Injected Batch from Main Injector, Bunch Length=1.59 μsec

ESME Predictions

Parameters:

Barrier Pulse = ±2kV, Ramp Voltage = ± 1kV Beam Intensity ~1.5E12p LE (initial) ~16 eVs, LE (final)= LE= 18 eVs ALE ~ 12%

Experimental Results from studies in MI

Peak RF Voltage: 500V
Type of Ferrite: Not Known
Shunt Impedancd: 50Ω
Bandwidth ~50kHz-100MHz
Dimension= 1.5meter
Cost = not known

Fast Bunch Compression:

Non--symmetric Compression

Experimental Demonstration

Fast Bunch Cogging

Schematic View

Advantages

- May not need any MAJOR rf upgrades in the Recycler.
- However, higher barrier rf voltage from ±2 kV to ±4 kV (±6 kV ?) is beneficial. (\$1M+)
 - − Higher rf voltage ← more compression
 - ← Faster cogging

Issues

- How to produce low energy spread beam in the Booster? - ideally speaking we need rectangular bunch from the booster (this should be produced without any emittance growth). Later I have given a possible scheme, which needs further work.
- Recycler LLRF is capable of doing this sort of rf gymnastics.
- Beam-loading is this a problem?
- How do we adiabatically capture in 53 MHz buckets in the MI before acceleration

Booster Beam

De-bunching (Bunch Rotation)

LE= 0.16 eVs Vrf(init.) = 350 kV Vrf (rotation) = 90kV (h=84)+40 kV(h= 168)

Booster Beam

Present Status (from Kiyomi)

Bunch Rotation off

injection, BROFF, high intensity Entries 143641 of Mean x 0.2948 of Mean y -1.609 of RMS x 1.533 of RMS y 7.195 of RMS y 7.19

Bunch Rotation on

Vrf ~ 450kV Vrf ~ 200kV

Future Plans

- If any of these techniques can be used for high intensity proton stacking in the Recycler then perform detailed simulations with beam-loading effects,
- Figure out the stacking scheme this is like solving a "magic cube puzzle".
 - For example, we know that Recycler is about 11us long. Inject the three successive Booster batches 1,2 and 3 at bucket number 1, 168 and 336 of Recycler. Compress the batch-1 to the right and batch-2 to left to their half size (these are non-symmetric compressions). Start compression of the 3rd batch to the left so that we can inject 4th batch can be injected in between 1st and 3rd. And so on. In the meanwhile, one can merge 1st and 2nd compressed batched start (fast) cogging towards the 3rd batch. And so on.
- Understand what are their limitations
- Conduct some further experiments in the Recycler to workout the mechanics. This
- So on.....